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2025 Due date: July 5th, 2024, 18h15

PHYS-314 – Exam – room PO 01

• You must answer ALL questions in the short answer section.

• You must answer precisely 2 (out of 3) of the questions in the long answer section.

Please mark clearly which two you have answered below and start a new sheet for

each of the long answer questions.

• Write your solutions in the indicated space. Scrap paper will not be corrected.

• You are reminded that Examiners attach great importance to legibility, accuracy and

clarity of expression.

• A simple calculator (without internet access) is allowed.

• Please write your name on the top right corner of each sheet you use.

• Good luck! Enjoy!

NAME STICKER GOES HERE

Short answers: / 50

Problem A: YES or NO / 25

Problem B: YES or NO / 25

Problem C: YES or NO / 25

Total /100



Short questions

1. Bloch Sphere

Density matrices satisfy the following 3 conditions:

• The density matrix is Hermitian: ρ̂† = ρ̂

• It has trace 1: Trρ̂ = 1

• It is positive or null : ⟨Ψ|ρ̂|Ψ⟩ ≥ 0, ∀Ψ

a) Show that any density matrix ρ̂ of a 2 level system can be written

ρ̂ =
1

2
(Î + σ̂.r), (1)

where σ̂ = (σ̂x, σ̂y, σ̂z). Argue that r is a real vector of 3D space and |r| ≤ 1.

Hint: The eigenvalues of ρ̂ are 1
2
(1± |r|).

(3 marks)

b) A pure state is a density operator that can be written in the form ρ̂ = |ψ⟩⟨ψ|. Show
that the Bloch vector r for a pure state has norm 1, |r| = 1.

(4 marks)

c) A mixed state is a density operator that is a convex combination of pure states.

That is,

ρ̂mixed =
∑
i

pi|ψi⟩⟨ψi|

with 0 < pi < 1 and
∑

i pi = 1.

Based on this definition of a mixed state give a geometric argument to show that the

Bloch vector of a mixed state is always less than 1, |rmixed| < 1.

(3 marks)

2. Entanglement

Alice, Bob and Charlie share a three qubit state:

|ψ⟩ABC =
1√
2
(|000⟩ABC + |111⟩ABC) (2)

where |±⟩ = 1√
2
(|0⟩ ± |1⟩ are the ±1 eigenstates of σ̂x and |0⟩ and |1⟩ are the ±1

eigenstates of σ̂z respectively.

a) Suppose Bob measures his qubit in the σ̂z basis. Find the output states for Alice

and Charlie conditional on Bob’s measuring 0 and conditional on Bob measuring 1.

(2 marks)
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b) What if Bob instead measures in the σ̂x basis? State the output states for Alice

and Charlie conditional on Bob’s measurement outcomes in this case.

(3 marks)

c) Assuming Bob does not tell Alice or Charlie the output to his measurement, what

is the mixed state that Alice and Charlie share after his measurement in the σ̂z basis?

(2 marks)

d) Could Alice and Charlie use this state to violate a Bell inequality? Explain your

answer.

(3 marks)

3. Fermions and Bosons

Which of the following states are valid Fermionic states and which are valid Bosonic

states:

(a)

(
1√
2
|p⟩1|q⟩2 +

1√
2
|q⟩1|p⟩2

)(
1√
2
|R⟩1|L⟩2 −

1√
2
|L⟩1|R⟩2

)
(3)

(b)

(
1√
2
|p⟩1|q⟩2 −

1√
2
|q⟩1|p⟩2

)
|R⟩1|R⟩2 (4)

(c)

(
1√
2
|p⟩1|q⟩2 +

1√
2
|q⟩1|p⟩2

)(
1√
2
|R⟩1|L⟩2 +

1√
2
|L⟩1|R⟩2

)
(5)

(d) |p⟩1|q⟩2|R⟩1|L⟩2 (6)

(e)

(
1√
2
|p⟩1|q⟩2 −

1√
2
|q⟩1|p⟩2

)(
1√
2
|R⟩1|L⟩2 −

1√
2
|L⟩1|R⟩2

)
(7)

(5 marks)

4. Symmetry. Consider a unitary irreducible representation R(g) = Ug of group G.

a) Use the Grand Orthogonality Theorem to prove that

1

N

∑
g

UgXU
†
g =

1

d
Tr[X] I (8)

where X is an arbitrary operator, d = dim(X) and N is the order of the group.

(4 marks)

The above relation for averaging over irreducible representations of finite groups gen-

eralizes to averaging over compact Lie groups. In this case the finite average 1
N

∑
g

becomes a continuous integral over a uniform measure
∫
dµ(g) and we have:

⟨X⟩G :=

∫
G

dµ(g)UgXU
†
g =

1

d
Tr[X] I (9)
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b) Use this result to explain why applying random single qubit rotations to any single

qubit state on average results in the maximally mixed state.

(3 marks)

c) We now consider only random rotations about the x-axis. What is the relevant

symmetry group and representation in this case? Why can Eq. (9) not be directly

applied to compute this average?

(3 marks)

d) Explain how a different version of Eq. (9) can be applied to compute the state that

results on average from applying a random x rotation to a qubit.

(4 mark)

e) Hence compute the state that results on average from applying a random x rotation

to a qubit.

(2 marks)

5. Variational Principle. Consider the 1D Harmonic Oscillator with H:

H = − ℏ2

2m

d2

dx2
+

1

2
mω2x2

Use the variational principle with the trial wavefunction

ψ(x) = Ae−bx2

to upper bound the ground state energy of H, where A = (2b/π)1/4 is the normalization

constant.

(9 marks)

You may find the following integral helpful:∫ ∞

−∞
x2e−ax2

dx =

√
π

2a3/2
. (10)
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Longer questions

Please pick 2 questions to attempt - mark your choices clearly on the cover sheet.

Start a new sheet for each question.

Question A - Perturbation Theory

Consider a free particle in a box of width a, with sides at x = 0 and x = a. The unperturbed

problem is well known: the eigenvalues are

E(0)
n = n2ℏ2π2/2ma2 = n2E

(0)
1 ,

and the eigenfunctions are

⟨x|n0⟩ = un(x) =
√

2/a sin(nπx/a).

(a) We now add a perturbation

H1 = W cos(πx/a).

Sketch the perturbed potential well as a function of x. Show that all the first-order

energy shifts are zero.

(4 marks)

(b) Find the first order correction to the ground state wavefunction. Sketch the ground

state wavefunction and the correction.

(7 marks)

(c) What constraints are required on W for perturbation theory to be a suitable approxi-

mation method?

(3 marks)

(d) What is the second-order shift E
(2)
n for n = 1 and n = 2?

(11 marks)

Hint: You will find the evaluation of the integrals much simplified if you start by

proving for the perturbation a relationship of the form

H1un = α(un−1 + un+1).

This relationship turns the integrals into orthogonality integrals. You will need to

think about the meaning of this equation for n = 1 since n− 1 is then zero, while un
is only defined for n > 0.
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Question B - Symmetry

The quaternion group Q8 is an order 8 non-abelian group which is isomorphic to the quater-

nions under multiplication. Do not worry if you do not know anything about quaternions,

all you need to know to address this question is that Q8 has the following Cayley table:

e ē i ī j j̄ k k̄

e e ē i ī j j̄ k k̄

ē ē e ī i j̄ j k̄ k

i i ī ē e k k̄ j̄ j

ī ī i e ē k̄ k j j̄

j j j̄ k̄ k ē e i ī

j̄ j̄ j k k̄ e ē ī i

k k k̄ j j̄ ī i ē e

k̄ k̄ k j̄ j i ī e ē

1. What order are the proper (i.e., non-trivial) subgroups of Q8?

(2 marks)

2. Find two of the proper subgroups of Q8.

(3 marks)

3. The conjugacy classes of Q8 are

{e}, {ē}, {i, ī}, {j, j̄}, {k, k̄}

Verify that {e} and {k, k̄} are indeed conjugacy classes.

(3 marks)

4. What is an irreducible representation (or, ‘irrep’ for short)? How many (non-equivalent)

irreducible representations does Q8 have?

(3 marks)

5. Consider this representation of Q8:

e 7→
(
1 0

0 1

)
ē 7→

(
−1 0

0 −1

)
i 7→

(
i 0

0 −i

)
ī 7→

(
−i 0

0 i

)
j 7→

(
0 1

−1 0

)
j̄ 7→

(
0 −1

1 0

)
k 7→

(
0 i

i 0

)
k̄ 7→

(
0 −i
−i 0

)
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State a theorem that allows you to determine whether a representation is irreducible.

Hence determine whether this representation is irreducible.

(3 marks)

6. State a theorem that allows you to determine the dimensions of a groups irreps. Hence,

what are the dimensions of each of the quarternion’s groups irreps?

(3 marks)

7. State a theorem that can help identify a groups 1D irreps. Hence identify the quater-

nion’s groups 1D irreps.

(Hint you will need to use the Cayley table to help find the irreps. You may also find

that recalling the irreps of C3v is helpful to guess.)

(8 marks)
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Question C - Quantum Bomb Testing

Let’s start by getting familiar with a parameterized beamsplitter of the form sketched below:

BS1

mirror

mirror

D2

D1

BS2BS1
k1k1k1

k1k1

k2

k2

k2k2

k2

The action of this parameterized beamsplitter on the mode operators (a†1, a
†
2) is given by the

unitary

UBS1 = U †
BS2 =

[
cos θ − sin θ

sin θ cos θ

]

1. Find the output state for the case that the initial state contains: (i) 1 photon in mode

k1, vacuum in mode k2 (ii) One photon in each mode (iii) Two photons in mode k1.

(10 marks)

2. Suppose you place photon detectors in both output modes of the beamsplitter. Would

it be possible to determine which of the three initial states, (i) (ii) or (iii), you started

with after a single run of the experiment? Explain.

(2 marks)

3. Would it be possible to determine which of the three initial states, (i) (ii) or (iii), you

started with after many runs of the experiment?

(3 marks)

The Mach Zender interferometer is a variant on the double slit experiment where there are

only two possible paths for a photon to take. Let’s consider a version with a parameterized

beamsplitter and a box that potentially contains a bomb in one arm as shown in the figure

below. Can we use quantum trickery to test whether it contains a live bomb without actually

setting the bomb off?

Assume a single photon enters the interferometer through the left hand arm (mode k1).

4. Assuming there is no bomb in the interferometer, what is the probability of measuring

a photon at detectors 1 and 2 respectively?

(1 marks)
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BS1

mirror

mirror
?

D1

D2

BS2BS2
k1

k1

k1k1

k2k2

k2

k2

Suppose now there is a bomb in the interferometer. If the bomb does not explode, then the

photon is collapsed back into being definitely in the k1 arm of the interferometer.

There are three possible outcomes when a bomb is in the interferometer:

A) The bomb explodes.

B) The bomb does not explode but you can conclude with certainty that the interferometer

does contain a bomb.

C) The bomb does not explode and you cannot tell whether or not there is a bomb.

5. What is the probability of the bomb exploding (i.e. option A) ?

(3 marks)

6. What is the probability of finding the photon at detectors 1 and 2 if there is a bomb

but it does not explode?

(3 marks)

7. Hence, what are the probabilities of options B (you detect the bomb) and C (you

cannot tell whether or not there is a bomb)?

(3 marks)
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